
C?rr.Ji /.'

'̂'i(.

•t>.C^

SCHOOL ANAGEMENT

:opV

LISP as the language for an incremental computer

by

Lionello A. Lombard!" and Bertram Raphael**

March 1964 51-61+

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE 39, MASSACHUSETTS

MAi». INST. TiXil

MAR 17 1964]

DCWtY LI8RAKY

Copy
I

LISP as the language for an incremental computer

by

Lionello A. Lombardi" and Bertram Raphael**

March 1964 51-61+

Work reported herein was partly supported by Project MAC, an M. I. T,

research program sponsored by the Advanced Research Projects Agency,

Department of Defense, under Office of Naval Research Contract Number

Nonr-U102(01). Reproduction in whole or in part is permitted for any

purpose of the United States Government.

Associate Professor of Industrial Management, M. I. T.

'* Research Assistant, Mathematics Department, M. I. T.

1. General

The following two characteristics are commonly found in information system

for the command and control of complex, diversified military systems, for the

supply of information input for quantitative analysis and managerial decision

making, and for the complementation of computer and scientist in creative

thinking ("synnoesis") [10],

1) the input and output information flows from and to a large, continuous,

on-going, evolutionary data base;

2) the algorithms of the process undergo permanent evolution along lines

which cannot be predicted in advance.

Most' present day information systems are designed along ideas proposed by

Turing and von Neumann, The intent of those authors was to automate the

execution of procedures, once the procedures were completely determined. Their

basic contributions were the concepts of "executable instructions", "program"

and "stored program computer". Information systems based on this conventional

philosophy of computation handle effectively only an information process which

1) is "self-contained", in the sense that its data have a completely predeter-

mined structure, and 2) can be reduced to an algorithm in final" form, after

which no changes can be accomodated but those for which provision was made in

advance. Consequently, the current role of automatic information systems in

defense, business and research is mainly confined to simple routine functions

such as data reduction, accounting ,and lengthy arithmetic computations. Such

systems cannot act as evolutionary extensions of human minds in complex, changing

environments.

List -processing computer languages [7] have introduced a flexible and

dynamically- changable computer memory organization. While this feature permits

-2-

the manipulation of new classes of data, it does not solve the basic communica-

tion problems of an evolutionary system. Each program must still "know" the

form of its data; and before any processing takes place, a complete data set

containing a predetermined amount of data must be supplied.

Multiple-access, time-shared, interactive computers [8] cannot completely

make up for the inadequacies of conventional and list-processing systems. With

time-sharing, changes in systems being developed can be made only by interrupting

working programs, altering them, and then resuming computation; no evolutionary

characteristics are inherent in the underlying system of a multiple-access, time-

shared computer. Thus, as preliminary usage confirms, multiple-access time

sharing of conventional computers is useful mainly in facilitating debugging of

programs,, While such physical means for close man-computer interaction are

necessary for progress in information systems, they are not sufficient alone to

produce any substancial expansion in the type of continuous, evolutionary,

automatic computer service with which this paper is concerned.

2o The problem

A new basic philosophy is under development for designing automatic infor-

mation systems to deal with information processes taking place in a changing,

evolutionary environment, [1,5,5]„ This new apporach requires departing from

the ideas of Turing and von Neumann, Now the problem is not "executing deter-

mined procedures", but rather "determining procedures", Open-endedness .which

was virtually absent from the Turing-von Neumann machine concept, must lie in

the very foundations of the new philosophy.

The basis of the new approach is an "incremental computer" which, instead

of executing frozen commands, evaluates expressions under the control of the

available information context. Such evaluation mainly consists of replacing

blanks (or unknowns) with data, and performing arithmetic or relational reduct-

ions. The key requirements for the incremental computer are:

1) The extent to which an expression is evaluated is controlled by the

currently available information context. The result of the evaluation is a

new expression, open to accommodate new increments of pertinent information by

simply evaluating it again within a new information context.

2) Algorithms, data and the operation of the computer itself are all

represented by expressions' of the same kind. Since the form of implementation

of an expression which describes an evaluation procedure is irrelevant, decision

of hardware v<; . software can be made case by case,

3) The common language used in designing machines, writing programs, and

encoding data is directly understandable by untrained humans.

While the Turing-von Neumann computer is computation-oriented, the incre-

mental computer is interface-oriented. Its main function is to catalyze the

open-ended growth of information structures along unpredictable guidelines. Its

main operation is an incremental data assimilation from a variable environment

composed of information from humans and/or other processors. (Still, the

incremental computer is a universal Turing machine, and can perform arithmetic

computations quite efficiently).

Current research on the incremental computer is aimed at designing it with

enough ingenuity to make the new principles as fruitful as the ones of Turing

and von Neumann (see [1] and [5]). Some of the main study areas are: the design

of the language; the class of external recursive functions and a mechanism called

a discharge stack [2] for their fast evaluation; the design of a suitable memory

-4-

and memory addressing scheme (the latter problem is being attacked by means of

higher order association lists); saving on transfers of information in memory

and the use of cyclic lists; avoidance or repetition of identical strings with-

in different expressions through the use of shorthands , and related problems of

maintenance of free storage.

The following will present a quite elementary, restricted and perhaps in-

efficient version of the incremental computer based on LISP. LISP is the

currently available computer language which most closely satisfies the require-

ments of an incremental computer system. The purpose of this presentation is to

demonstrate some of the concepts of incremental data assimilation to scientists

who are familiar with LISP. Features of a preliminary LISP implementation can

be used as a guide in the development of the ultimate language for the

incremental computer.

3, Aspects of the proposed solution

Various structures have been propsed for the language of the incremental

computer, mainly stressing closeness to natural language (for preliminary

studies see [3] and [4]), Here, however, we will consider the case in which

this language is patterned on LISP. In this case a simplified version of the

incremental computer will be represented by an extension of the normal LISP

"EVALQUOTE" operator. This operator, itself programmed in LISP , will evaluate

LISP expressions in a manner consistent with the principles of the incremental

computer which are presented below. The LISP representations and programs for

implementing these principles will be discussed in section U of this paper. The

LISP meta-language will be used for all examples in the following sections.

-5-

i) Omitted arguments:

Suppose func is defined to be a function of m arguments. Consider the

problem of evaluating

func[x2^iX2; ...; x^J (n < m) qs

Regular LISP would be unable to assign a value to (1). However, for the jncre-

'"ental computer (1) has a value which is itself a function of (m-n) arguments.

This latter function is obtained from (1) by replacing the appropriate n argu-

ments in the definition of func by the specified values xj^, X2 , ..., x .

For example, consider the function

list 3 = ^[[x;y;z];cons[x;cons[y;cons[z;NIL]]]]

If A and (B,C) are somehow specified to correspond to the first and third

arguemnts in the list 3 definition, then the incremental computer should find

the value of list 3CA;(B,C)] to be

?^[[u];cons[A;cons[u;((B,C))]]]

ii) Indefinite arguments:

In regular LISP a function can be meaningfully evaluated only if each

supplied argument is of the same kind — such as S-expression, functional

argument, or number — as its corresponding variable in the definition of the

function. In contrast, the incremental computer permits any argument of a

function to be itself a function of further, undetermined arguments. (If these

latter arguments were known, then the inner function could be evaluated before

the main function, as LISP normally does.) The value of a function with such

indefinite arguments should be a new function, all of whose unspecified arguments

are at the top level.

-6^

For example, consider again the function list 3 defined above. In the

incremental computer,

list 3 [D;A[[u];cons[E;u]];A[[u];carCu]]]

should evaluate to

(\[Cr;s][cons[D;cons[cons[E;r];cons[car[s];NIL]]]]3

iii) Threshold conditions

Consider for example the function sum = C[x;y];x + y]. We say that the

threshold condition for evaluating a sum is that both arguments of sum be

supplied and that they both be numerical atoms. In general, a threshold

condition is a necessary and sufficient condition for completing , in some

sense, the evaluation of a function. In regular LISP, it is considered a

programming error to request the evaluation of an expression involving a

function whose threshold condition cannot be satisfied. In the incremental

computer, on the other hand, expressions may be evaluated even though they

involve indefinite or omitted arguments (as in (i) and (ii) above). In these

cases the evaluation is not complete in the sense that the values are them-

elves functions which will require additional evaluation whenever the appro-

priate missing data are supplied.

Occasionally the threshold condition for a function does not require the

presence of all the arguments. For example, the threshold condition associated

with the logical function and is, "either all arguments are present and are

truth-valued atoms, or at least one argument is present and it is the truth-

valued atom representing falsity."

-7-

The incremental computer must know the threshold conditions for carrying

out its various levels of evaluation. One of the most challenging problems in

the theoretical design of the new incremental computer is that of determining

efficient threshold conditions for arbitrary functions designed by a programmer.

The illustrative program described in the next section employs only the

most obvious threshold conditions.

4. The program

Let us consider some of the problems of representation and organization

which must be faced in the course of implementing a LISP version of the

incremental computer,

i) Omitted arguments:

Since LISP functions are defined by means of the lambda-notation [9], the

role of an argument of a function is determined solely by its relative position

in the list of arguments. If an argument is omitted, the omission must not

change the order number of any of the supplied arguments. This can be accomplised

only if each omitted argument is replaced by some kind of marker to occupy its

position. Therefore in this LISP formalism for the incremental computer each

function must always be supplied the same number of arguments as appear in its

definition; however, some of these arguments may be the special atomic symbol

"NIL''" which indicates that the corresponding argument is not available for the

current evaluation.

The evaluation of a function, some of whose arguments are NIL*'s, is approxi-

mately as follows: Each supplied argument (i.e., each argument which is not_

-8-

NIL") is evaluated, the value substituted into the appropriate places in the

definition of the function, and the corresponding variable deleted from the

list of bound variables in the definition of the function. What remains is

just the definition of a function of the omitted variables,

ii) Indefinite arguments:

An indefinite argument, as discussed in section 3. above, is an argument

which is itself a function of new unknown arguments. The present program

assumes that any argument which is a list whose first element is the atom

"LAMBDA" is an indefinite argument. This convention does not cause any

difficulty in the use of functional arguments, since they would be prefixed,

as S-expressions, by the symbol "FUNCTION". However, there is an ambiguity be-

tween indefinite arguments and functional arguments in the meta- language. Also,

it is illegal to have an actual supplied argument be a list starting with a

"LAMBDA", A more sophisticated version of this program should have some unique

way to identify indefinite arguments (perhaps by consing a NIL* in front of

them)

,

The treatment of indefinite arguments is straightforward if one remembers

that a main function and an indefinite argument are both ^-expressions, each

consisting of a list of variables and a form containing those variables. The

process of evaluating a function fn of an indefinite argument arg involves, then,

identifying the variable v_ in the variable-list of fn which corresponds to arg ;

replacing v by the string of variables in the variable-list of arg ; and

substituting the entire form in ar£ for each occurrence of _v in the form in fn.

The treatment of a conditional function containing an indefinite argument is

similar although somewhat more complicated.

-9-

iii) Conflicts of variables:

The same bound variables used in different ^-expressions which appear one

within another 'conflict" in the sense that they make the meaning of the over-

all expression ambiguous. The use of indefinite arguments frequently leads to

such conflicts. This problem is avoided in the present system by replacing

every bound variable, as soon as it is encountered, by a brand new atomic symbol

generated by the LISP function gensym .

iv) Threshold conditions:

Certain program simplifications can be made automatically by the incremental

computer, if corresponding threshold conditions are satisfied. In particular,

if every argument of a function is the sytnbol NIL", then the function of those

arguments is replaced by the function itself.

The incremental computer is represented by the LISP function evalquote 1 .

This function is similar to the normal evalquote operator except that

evalquote 1 first checks to see if any incremental data processing, of the

kinds discussed above, is called for. If so, evalquote 1 performs the

appropriate partial" evaluations. If the given input is a normal LISP function

of specified arguments, on the other hand, the effects of evalquote 1 and

evalquote are identical.

Appendix I is a listing of the complete deck for a test run, and includes

the definitions of evalquote 1 and all its subsidiary functions. The results of

the run, showing examples of incremental data assimilation with the subst.

1

function (which is identical to the normal LISP subst function), are given in

Appendix II. The curious reader can understand the detailed operation of the

programs by studying these listings.

-10-

5. Conclusions

We can now make the following observations concerning the use of LISP as

the language for the incremental computer:

i) Although perhaps too inefficient to be a final solution, LISP is still a

very useful language with which to illustrate the features of a new concept of

algorithm representation. It is especially easy to use LISP to design an

interpreter for a language similar to, but different in significant ways from,

LISP itself.

ii) The program described in this paper is quite limited with regard to its

implementation of both LISP and the incremental computer. If a more complete

experimental system were desired, the present system could easily be extended

in any of several directions. For example, in LISP, allowance could be made

for the use of functions defined by machine-language subroutines, and the use

of special forms; in the incremental computer, threshold conditions could be

inserted to allow partial evaluation and simplification of conditional

expressions.

iii) Replacing all bound variables by new symbols is too brutal a solution to

the "conflict" problem; the resulting expressions become quite unreadable.

Bound variables frequently have mnemonic significance, and therefore should not

be changed unless absolutely necessary. A more sophisticated program would

identify those symbols which actually caused a conflict, and then perhaps replace

each offending symbol with one whose spelling is different but similar.

-11-

iv) When a function of an indefinite argument is evaluated, the form in the

argument is substituted for each occurrence of a variable in the form in the

function definition. Similarly, when a function has omitted arguments, those

arguments which were not omitted are each evaluated and substituted for each

occurrence of variables in the form in the function definition. In the

interest of saving computer space, we must be sure that what is substituted is

a reference to an expression, not a copy of the expression. In the interest of

readability, perhaps the print-outs should similarly contain references to

repeated sub-expressions, e.g. in the form of ^^-expressions, rather than

fully expanded expressions.

12-

BIBLIOGRAPHY

[1] L. A. Lombardi and B. Raphael: Man-computer information systems, lecture
notes of a two week course UCLA Physical Sciences Extension, July 20-30,
1954.

[2] L. A. Lombardi: Zwei Beitrage zur Morphologie und Syntax deklarativer
Systemsprachen, Akten der 1962 Jahrestagung der Gesellschaft fur
angewandte Hathematik Mechanik (GAHM) . Bonn (1962); Zeitschr. angew.
Math, Mech. (42) Sonderheft, T27-T29^

[3] : On the Control of the Data Flow by Means of Recursive Functions,
Proc. Symp. "Symoblic Languages in Data Processing" . International
Computation Center, Roma, Gordon and Breach, 196 2, 173-186.

[4] : On Table Operating Algorithms, Proc. 2nd IFIP Congress , Munchen
(1962), section 14.

[5] . Prospettive per il calcolo automatico, Scientia (in Italian and

French) Series IV (57) 2 and 3 (1953).

[6] : Incremental data assimilation in man-computer systems, Proc. 1st

Congress of Associazione Italiana Calcolo Automatico (AICA) , Bologna,

May 20-22, 1953 (in press).

[7] D. G. Bobrow and B. Raphael, A Comparison of List-processing Computer

Languages, Comm. ACM , expected publication April or May, 1964.

[8] M. I. T. Computation Center, The Compatible Time-Sharing Systems: A

Programmer * s Guide , M. I. T. Press, Cambridge, Mass., 1963.

[9] A. Church, The Calculi of Lambda-Conversion , Princeton University Press,

Princeton, New Jersey, 1941.

[10] L. Fein: The computer-related science (synnoetics) at a University in

the year 1975, American Scientist (49) (1951), 149-158; DATAMATION (7)

9 (1951), 34-41,

TEST B RAPHAEL M948 APPENDIX I: Progrim Listing
DEFINE ((__ _
(EVALQUOTEl (LAMBDA (FN X)

"
'

'"

.(_A P P L Y 1_ _FN__X N ID)J_
(APPLYl (LAMBDA (FN X A) (COND'
_JJATOM FN) (COND

((GET FN (QUOTE EXPR)) (APPLYl (GET FN (QUOTE EXPR)) X A))
_,((EQ FN (QUOTE ._CAR)) (COND

((NULL* (CAR X)) (QUOTE CAR)) " ^'

(. (LAM 1 LCLA.R X)) (AP P 2 _ X (QUOJIE CAR)))

(T (CAAR X))))

L(EQ FN _ (QUOTE CDR)) (COND
((NULL* (CAR X)) (QUOTE CDR))

((LAMl . (CAR _ __XX)_.^JAPP2 X (QUOTE CDR)))
(T (CDAR X))))

L(_EQ FN (^.UP_TE__CON_S_L)_(COND ((LAM2 X) (APP3 X A (QUOTE CONS) Ll_
(T (CONS (CAR X) (CADR X))))

)

JJEQ FN (QUOTE _ ATOM)) (COND ((NULL* (CAR X)) (QUOTE ATOM))
{(LAMl (CAR X)) (APP2 X (QUOTE ATOM))) (T (ATOM (CAR X)))))

((EQ FN (QUOTE EQ)) (COND ((LAM2 X)(APP3 X A (QUOTE EQ)))

(T (EQ (CAR X) (CADR X))))

)

(T (ERROR (LIST (QUOTE APPLYl) FN X A)))))

((EQ (CAR FN) (QUOTE LAMBDA)) (APPLY2 (LAMS
(CONS (QUOTE LAMBDA) (UNFLICT (CDR FN))) X) A))

(T (ERROR (LIST (QUOTE APPLYl) FN X A))))))

(LAMl (LAMBDA (X)

(AND (NOT (ATOM X)) (EQ (CAR X) (QUOTE LAMBDA)))))

(APP2 (LAMBDA (X A)

(LIST (CAAR X). (CADAR X) (LIST A (CADDAR X))))

(NULL*^ (LAMBDA (X) (EQ _X _ (QUOTE NIL*))))

(LAM2 (LAMBDA (X) (OR
(MEMBER (QUOT E NIL*) X) (LAMl (CAR X)) (LAM l (CAPR X)

)

))

)

(APP3 (LAMBDA (X A F) ((LAMBDA (U V) (APPLYl
.

(LIST (QUOTE LAMBDA) (LjST U V)(LIST F U V)) X A))

(GENSYM) (GENSYM)))) „

(LAMS (LAMBDA _(FN XJ__J_PROG jJ/AR.l^ARGl VARS ARGS ARG2 M LJL

(SETQ M (CADDR FN)

)

_ (SETQ ARGS X) _ .
; .

(SETQ VARS (CADR FN)

)

LOOP (SETQ L (CAR ARGS))
(COND ((LAMl L)

_(G0 FLICT))) _

(SETQ VARl (CONS (CAR VARS) VARD)
(SETQ ARGl (CONS L ARGl)) .. ^ ..

LOOPl (SETQ VARS (CDR VARS))
(COND ((NULL VARS) (RETURN (LIST (REVERSE VARl) M

(REVERSE ARGl))))

)

(_SET_Q ARGS (_CDR ^ARGS))

(GO LOOP)
FLICT (SETQ L (UNFLICT (CDR L)))

(SETQ ARG2 (CAR D)

L00P2 (SETQ VARl (CONS (CAR ARG2) VARl)) ___

(SETQ ARGl (CONS (QUOTE NIL*) ARGl))

(SETQ ARG2 (CDR ARG2))

(COND (ARG2 (GO L00P2))

)

(SETQ M (SUBST (CADR L) (CAR VARS) M))

(GO LOOPl)))

)

(UNFLICT (LAMBDA (Y) (PROG (L)

_{SETO L (CAR Y)l
LOOP (COND ((NULL L) (RETURN Y)))

(.S E T Q __Y. __XSUBSI (GENSYM) (CA R L) YH
(SETQ L (CDR D)
(G0_ LOOP) _)))

iAPPLY2 (LAMBDA (L A) (COND ((MEMBER (QUOTE N I L*) (CADDR L
)

)

(APPLY3 LA)) (T (EVALl (CADR L) (PAIRLIS (CAR L)
(CADDR L) A))))))

J.APPLY3_(LAMBDA (L A) (SEARCH (CJ\DDR L)
(FUNCTION (LAMBDA (J) (NOT (EQ (CAR J) (QUOTE NIL*)))))
(FUNCTION (LAMBDA (J) (APPLY4 LA)))
(FUNCTION (LAMBDA (J) (LIST (QUOTE LAMBDA)(CAR L)(CADR L))))))

)"

(APPLY4 (LAMBDA (L A) (PROG (VARS FORM ARGS M ARGl)
(SETQ VARS (CAR__L)_)
(SETQ FORM (CADR D)

(SETQ ARGS (CADDR D)
LOOP (SETQ ARGl (CAR ARGS))

(COND ((EQ ARGl (QUOTE NIL*)) (GO B)))

(SETQ FORM (SUBST (LIST (QUOTE QUOTE) ARGl) (CAR VARS) FORM))
^LOOPl (SETQ ARGS _(CDR ARGSjJ

(COND ((NULL ARGS) (RETURN (LIST (QUOTE LAMBDA) M FORM))))
(SETQ VARS (CDR VAR S) .)

(GO LOOP)
B (SETQ _ M (CON S (CAR VARS) M))
(GO LOOPl))))

(EVALl (LAMBDA (E A) (COND ((ATOM E) (COND
JJGET E (QUOTE APVAL)) (EVAL E A))

((EQ E (QUOTE NIL*)) (QUOTE NIL*))(T (CDR (ASSOC E A)))))

_L(ATOM (CAR E)) (COND
((EQ (CAR E) (QUOTE QUOTE)) (CADR E))

((EQ (CAR E) (QUOTE COND)) J EVCONl ^(CDR E) A))

((EQ (CAR E) (QUOTE LAMBDA)) E)

(T (APPLYl (CAR E)__ (EVLISl (CDR E) A) A))) _L
(T (APPLYl (CAR E) (EVLISl (CDR E) A) A)))))

(EVCONl (LAMBDA (C A) ((LAMBDA (X) (COND

_ ((LAMl X) (LIST^ (CAR X) (CADR X)_

(CONS (QUOTE COND)(CONS (LIST (CADDR X)(CADAR O) (CDR C)))))

((EVALl X A) (EVALl ^ (CADAR C) A))

(T (EVCONl (CDR O A)) >) (CAAR O)))

(PAIRLIS (LAMBDA (X Y A) (COND ((NULL X) A)

(T (CONS (CONS .(.CAR _X) (CAR Y)) (PAIRLIS (CDR X)(CDR Y) A)))))) _

(ASSOC (LAMBDA (X A) (COND ((EQUAL (CAAR A) X) .. (CAR A
)) . .

(T (ASSOC X (CDR A))))))

(EVLIS'I (LAMBDA (M A) (COND ((NULL M) NIL)

(_T . (CONS _J EVALl (CAR^M) A) (EVLISl (CDR_ M)^ _A))) >))

(SUBSTl (LAMBDA (X _Y_ Z). . (COND _((AJOM .. ZJ^... (COND

(JL*JjJo.(iJiu3sii_J<_jr__LCAR_Z,L) (_SUBS^-a_X_J^ LCDB__I1-L1JJ-11-

))

EVALQUOTEl

(SUBSTl {(A B) C NIL*))

'ALQUOTEl
(SUBSTl ((LAMBDA (X) (CONS X (QUOTE (B)))") C (C Y ("c" D))) T
'ALO up T_Ea

(SUBSTl (NIL» NIL» NIL*))

'ALQUOTEl
_

(SUBSTl (ONION NIL* (LAMBDA (X Yf" (CONS X Y)

)
")]

'ALQUOTEl
(SUBSTl ((A . B) C (C Y (C D))))

STOP))))))))))
FIN

FUNCTION EVALOUOTE HAS BEEN ENTERED, ARGUMENTS.
._EVALQUOtEl
(SU6ST1 ((A B) C NIL*))

END OF EVALQUOTE, VALUE IS .._ .

(LAMBDA (G00003) (CONO ((ATOM G00003) (COND ((EQ G00003 (QUOTE O) (QUOTE
LQUQT£ J A Bi J (QUOTE_CJ _(CAR_G00003)J _ (SUBSTX.J QUOTE _l A B)) .(QUOTE _C).. (C C

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS. .

6VALQU0TE1
(SUBSTl ((LAMBDA (X) (CONS X I QUOTE (B) I) J C (C^T- (C- D)))

)

END OF EVALQUOTE, VALUE IS ..
(LAMBDA .{GQ0007) (COND ((ATOM IQUOTE_a(L_Y_^lC_ D)) i) (COND ((EQ (QUOTE (C

'

QUOTE (8)))) (T (QUOTE (C Y (C D)))))) (T (CONS (SUBSTl (CONS G00007 (QUI

Y_(C DJ J U)_l SUBSTl ICONS G00007_lQUOTE..lBJJi_IQUOTE_Ci-tCOR- 1 QUOTE (CY.

_F.UNCT10N. EVALQUOTE, _.HAS _BEEN ENTERED,-ARGUMENTS.
EVALQUOTEl
(SUBSTl, (NIL* NIL» NIL*).)

END OF EVALQUOTE, VALUE IS .. ^^
JJ.AMBDA_tG00008 G000C9 GOOOlO) ^COND^J (ATOM GOOOlO) (COND ((EQ GOOOlO GO

(SUBSTl GOOOOB G00009 (CAR GOOOlO)) (SUBSTl G00008 G00009 (COR GOOOlO)))

FUNCTION EVALQUOTE HAS BEEN ENTERED, ARGUMENTS..

EVALQUOTEl
(SUBSTl (ONION NIL* (LAMBDA (X Y) (CONS X Y))))

f::SM^^A^yS^S^?^^G00^Sli;%i00l2, (COND ((ATOM 'CONS GOOOl. 000013). (CCSO

QUOTE ONION)) (T (CONS GOOOK. G00015)))) (T <tONS(SUflST QUOTE ONICN)

(SUBSTl (QUOTE ONION) G00012 (CDR (CONS GOOOU GOOD 1 5))))))

)

ARGUMENTS..
APPENDIX-Ili-. Result of computer ruu-

)ND ((EQ G00003
JBSTl (QUOTE (A

(QUOTE O)
Bi) (QUOTE

(QUOTE (A B))) (T G00003)))
C) (CDR G00003)) J)JJ__„_

(T (CONS (SUBSTl

-^ARGUMENTS..

) C (C Y (C D)))}

IC D))n tCONO ((EQ (QUOTE (C Y (C D))) (QUOTE O) (CONS G00007 (

(CONS (SUBSTl (CONS G00007 (QUOTE (6))) (QUOTE C) (CAR (QUOTE (C

BJ}J (QUOTE CJ (CDR (QUOTE (C Y (C D)J)))Jni

ARGUMENTS..

DM GOOOlO) (COND
Tl G00008 G00009

((EQ GOOOlO G00009)
(COR GOOOlO))))))

G00008) (T GOOOlO))) (T (CONS

ARGUMENTS. .

Y))))

DM (CO\S GOOOlO G00015)) (COND ((EQ (CONS GOOOlO ^°°°^^ LnSn?i? ,

(T (CONS (SUBSTl (QUOTE ONION) G00012 (CAR (CONS G00014 G00015)))

DOOl^ G00015)))))))

FUNCTION eVALQUOTe HAS BEEN ENTERED. Var.iMPkiTcVALOUQTEl ci^iCKCUf ARGUMENTS.,EVALQUOTEl
(SU8ST1 ((A B) C CC vTc 0))))

.GARBAGE COLLECTOR ENTERED AT 04050 OCTAL*-•- FULL WORDS U
—GARBAGE COLLECTOR ENTER£0_AT_ 04050 OCTAL '-tw^u -UUIAL. PULL WORDS U
__END OF EVALQUOTE. VALUE^IS .. „HA B) Y ((A 8) D))

_THEnH6
, 0/ "000.-0T^„ C0HeT"thE^Wa1«US SAIorYoTALK Of MANr THINGS

FULL WOHDS U38 FREE 5329 PUSH DOWN DEPTH 105.

FULL WORDS 1426 FREE 4856 PUSH DOWN DEPTH 304

DF MANY THINGS -LEWIS CARROLL-

